Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 247
Filter
1.
Journal of Jilin University Medicine Edition ; 49(1):187-192, 2023.
Article in Chinese | EMBASE | ID: covidwho-20244843

ABSTRACT

Objective: To analyze the clinical manifestations, diagnostic methods and treatment process of the patients with non-Hodgkin's lymphoma complicated with human coronavirus(HCoV)-HKU1 pneumonia and improve the clinical medical staff's awareness of the disease, and to reduce the occurrence of clinical adverse events. Method(s): The clinical data of a patient with non-Hodgkin's lymphoma complicated with HCoV-HKU1 pneumonia with hot flashes and night sweats, dry cough and dry throat as the main clinical features who were hospitalized in the hospital in January 2021 were analyzed, and the relevant literatures were reviewed and the clinical manifestations and diagnosis of HCoV-HKU1 were analyzed. Result(s): The female patient was admitted to the hospital due to diagnosed non-Hodgkin's lymphoma for more than 2 months. The physical examination results showed Karnofsky score was 90 points;there was no palpable enlargement of systemic superfical lymph nodes;mild tenderness in the right lower abdomen, no rebound tenderness, and slightly thicker breath sounds in both lungs were found, and a few moist rales were heard in both lower lungs. The chest CT results showed diffuse exudative foci in both lungs, and the number of white blood cells in the urine analysis was 158 muL-1;next generation sequencing technique(NGS) was used the detect the bronchoalveolar lavage fluid, and HCoV-HKU1 pneumonia was diagnosed. At admission, the patient had symptoms such as dull pain in the right lower abdomen, nighttime cough, and night sweats;antiviral treatment with oseltamivir was ineffective. After treatment with Compound Sulfamethoxazole Tablets and Lianhua Qingwen Granules, the respiratory symptoms of the patient disappeared. The re-examination chest CT results showed the exudation was absorbed. Conclusion(s): The clinical symptoms of the patients with non-Hodgkin's lymphoma complicated with HCoV-HKU1 pneumonia are non-specific. When the diffuse shadow changes in the lungs are found in clinic, and the new coronavirus nucleic acid test is negative, attention should still be paid to the possibility of other HCoV infections. The NGS can efficiently screen the infectious pathogens, which is beneficial to guide the diagnosis and treatment of pulmonary infectious diseases more accurately.Copyright © 2023 Jilin University Press. All rights reserved.

2.
Studies in Natural Products Chemistry ; 77:187-240, 2023.
Article in English | Scopus | ID: covidwho-20242630

ABSTRACT

Respiratory viruses have an important history as a threat to global health. However, this problem has been aggravated due to the appearance of new outbreaks caused by a newly discovered virus or variant. Recently, the new coronavirus (SARS-CoV-2) has been a major concern for health authorities, and it was classified as a pandemic by the World Health Organization. Secondary metabolites obtained from plants represent an alternative to the discovery of new active molecules and have already shown potential to combat different viruses. In an effort to demonstrate the broad spectrum of antiviral action from these metabolites, this work describes the compounds that were effective against the major viruses that cause respiratory infections in humans. In addition, their mechanisms of action were highlighted as an approach to better understanding the virus-bioactive substance relationship. Finally, this study warns that, although phytocompounds have a broad antiviral action spectrum, the development of products and clinical trials based on these secondary metabolites is still scarce and therefore deserves greater attention from the scientific community. © 2023 Elsevier B.V.

3.
Journal of Biosafety and Biosecurity ; 4(2):151-157, 2022.
Article in English | EMBASE | ID: covidwho-20241592

ABSTRACT

The United Nations Secretary-General Mechanism (UNSGM) for investigation of the alleged use of chemical and biological weapons is the only established international mechanism of this type under the UN. The UNGSM may launch an international investigation, relying on a roster of expert consultants, qualified experts, and analytical laboratories nominated by the member states. Under the framework of the UNSGM, we organized an external quality assurance exercise for nominated laboratories, named the Disease X Test, to improve the ability to discover and identify new pathogens that may cause possible epidemics and to determine their animal origin. The "what-if" scenario was to identify the etiological agent responsible for an outbreak that has tested negative for many known pathogens, including viruses and bacteria. Three microbes were added to the samples, Dabie bandavirus, Mammarenavirus, and Gemella spp., of which the last two have not been taxonomically named or published. The animal samples were from Rattus norvegicus, Marmota himalayana, New Zealand white rabbit, and the tick Haemaphysalis longicornis. Of the 11 international laboratories that participated in this activity, six accurately identified pathogen X as a new Mammarenavirus, and five correctly identified the animal origin as R. norvegicus. These results showed that many laboratories under the UNSGM have the capacity and ability to identify a new virus during a possible international investigation of a suspected biological event. The technical details are discussed in this report.Copyright © 2022

4.
Current Psychiatry Research and Reviews ; 19(3):241-261, 2023.
Article in English | EMBASE | ID: covidwho-20237582

ABSTRACT

Background: The outbreak of the COVID-19 pandemic, the constant transformation of the SARS-COV-2 virus form, exposure to substantial psychosocial stress, environmental change, and isolation have led to the inference that the overall population's mental health could be affected, resulting in an increase in cases of psychosis. Objective(s): We initiated a systematic review to determine the impact of the SARS-COV-2 virus and its long-term effects-in both symptomatic and asymptomatic cases-on people with or without psychosis. We envisioned that this would give us an insight into effective clinical intervention methods for patients with psychosis during and after the pandemic. Method(s): We selected fifteen papers that met our inclusion criteria, i.e., those that considered participants with or without psychiatric illness and exposed to SARS-COV-2 infection, for this review and were retrieved via Google, Google Scholar, MEDLINE, PubMed, and PsychINFO Database. Key Gap: There is a dearth of research in understanding how COVID-19 affects people with or without a prior personal history of psychosis. Result(s): The systematic review summary provides insight into the state of knowledge. Insights from the systematic review have also been reviewed from the salutogenesis model's perspec-tive. There is moderate evidence of new-onset psychosis during the COVID-19 pandemic in which some antipsychotics treated the psychotic symptoms of patients while treating for COVID-19. Suggestions and recommendations are made for preventive and promotive public health strategies. Conclusion(s): The Salutogenesis model and Positive Psychology Interventions (PPI) provide another preventive and promotive public health management approach.Copyright © 2023 Bentham Science Publishers.

5.
Chinese Journal of School Health ; 44(2):266-268, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-20236974

ABSTRACT

Objective: To describe the clinical features, causal agent and transmission mode of a fever outbreak in a school in Shanghai. Methods: Field epidemiological approaches including case definition development, searching for contacts, distribution of diseases description, environmental sampling and laboratory testing. Results: A total of 16 influenza-like cases were included, all concentrated in the one class of grade two, including 15 students and 1 teacher. Among student cases, the incidence rate was 36.59%(15/41), the average age was 7.4 years, the incidence rate was 36.84%(7/19) for boys, 36.36%(8/22) for girls. The clinical course was 5-15 days, with the median of 9 days, and 18.75%(3/16) of the cases stayed studying while sick. The nasopharyngeal swab specimens in 16 cases all tested positive for influenza B, of which 11 tested positive for mycoplasma pneumoniae and 1 case also tested positive for coronavirus OC43. Body temperature, number of mononuclear cells, and treatment time of patients infected with Influenza B and mycoplasma pneumoniae were higher than those of patients infected with influenza B alone(P < 0.05). The outbreak lasted for 12 days, all sick students were treated and discharged from hospital, with no severe cases or death, and the outbreak was effectively controlled. Conclusion: This campus cluster outbreak caused by influenza B and mycoplasma pneumoniae. Patients with influenza B with mycoplasma pneumoniae have severe symptoms and a long course of illness, suggesting the importance of early management of the epidemic.

6.
How COVID-19 is Accelerating the Digital Revolution: Challenges and Opportunities ; : 147-164, 2022.
Article in English | Scopus | ID: covidwho-20232313

ABSTRACT

Human Coronavirus (HCoV) or Novel Coronavirus (2019-nCoV) is probably a brand new version of coronavirus that belongs to Betacoronaviruses kind Human Coronaviruses, similar to the Severe Acute Respiratory Syndrome (SARS) coronavirus and Middle-East Respiratory Syndrome (MERS) coronavirus. China recorded the number one case of this virus in December 2019 at Wuhan, the capital town of Hubei province. By 27 March 2020, 10:00 CET, nearly 23,335 humans died out of 509,164 showed instances recorded throughout the world. By the give up of January 2020, China showed that the Novel Coronavirus (2019-nCoV) transmitted from one human to another. This studies pursuits to research a completely specific medicament called "Hinokitiol Copper Chelate” towards the large quantity 2019-nCoV Spike Glycoprotein with a unmarried receptor binding domain. This take a look at gives a super version for Hinokitiol Copper Chelate to be examined in silico towards 2019-nCoV Main Protease. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

7.
Microbiol Spectr ; : e0469022, 2023 Jun 06.
Article in English | MEDLINE | ID: covidwho-20241596

ABSTRACT

Patients with 2019 coronavirus disease (COVID-19) exhibit a broad spectrum of clinical presentations. A person's antimicrobial antibody profile, as partially shaped by past infection or vaccination, can reflect the immune system health that is critical to control and resolve the infection. We performed an explorative immunoproteomics study using microbial protein arrays displaying 318 full-length antigens from 77 viruses and 3 bacteria. We compared antimicrobial antibody profiles between 135 patients with mild COVID-19 disease and 215 patients with severe disease in 3 independent cohorts from Mexico and Italy. Severe disease patients were older with higher prevalence of comorbidities. We confirmed that severe disease patients elicited a stronger anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) response. We showed that antibodies against HCoV-229E and HcoV-NL63 but not against HcoV-HKU1 and HcoV-OC43 were also higher in those who had severe disease. We revealed that for a set of IgG and IgA antibodies targeting coronaviruses, herpesviruses, and other respiratory viruses, a subgroup of patients with the highest reactivity levels had a greater incidence of severe disease compared to those with mild disease across all three cohorts. On the contrary, fewer antibodies showed consistent greater prevalence in mild disease in all 3 cohorts. IMPORTANCE The clinical presentations of COVID-19 range from asymptomatic to critical illness that may lead to intensive care or even death. The health of the immune system, as partially shaped by past infections or vaccinations, is critical to control and resolve the infection. Using an innovative protein array platform, we surveyed antibodies against hundreds of full-length microbial antigens from 80 different viruses and bacteria in COVID-19 patients from different geographic regions with mild or severe disease. We not only confirmed the association of severe COVID-19 disease with higher reactivity of antibody responses to SARS-CoV-2 but also uncovered known and novel associations with antibody responses against herpesviruses and other respiratory viruses. Our study represents a significant step forward in understanding the factors contributing to COVID-19 disease severity. We also demonstrate the power of comprehensive antimicrobial antibody profiling in deciphering risk factors for severe COVID-19. We anticipate that our approach will have broad applications in infectious diseases.

8.
ERS Monograph ; 2021(94):28-38, 2021.
Article in English | EMBASE | ID: covidwho-2323701

ABSTRACT

Alphacoronaviruses (HCoV-229E and HCoV-NL63) and betacoronaviruses (HCoV-OC43 and HCoV-HKU1) are common causes of upper respiratory tract infection in humans. SARS-CoV-1 and MERS-CoV emerged in 2002 and 2012, respectively, with the potential of causing severe and lethal disease in humans, termed SARS and MERS, respectively. Bats appear to be the common natural source of SARS-like coronaviruses including SARS-CoV-1, but their role in MERS-CoV is less clear. Civet cats and dromedary camels are the intermediary animal sources for SARS-CoV-1 and MERS-CoV, respectively. Nosocomial outbreaks are hallmarks of SARS and MERS. MERS patients with comorbidities or immunosuppression tend to progress more rapidly to respiratory failure and have a higher case fatality rate than SARS patients. SARS has disappeared since 2004, while there are still sporadic cases of MERS in the Middle East. Continued global surveillance is essential for SARS-like coronaviruses and MERS-CoV to monitor changing epidemiology due to viral variants.Copyright © ERS 2021.

9.
Infektoloski Glasnik ; 42(1):9-15, 2022.
Article in English | EMBASE | ID: covidwho-2326894

ABSTRACT

Seven human coronaviruses have been identified so far: four seasonal coronaviruses (HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1) and three novel coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2). While seasonal coronaviruses cause only mild symptoms, novel coronaviruses cause severe and potentially fatal infections. All known coronaviruses originated in animals. Bats are considered as an origin for the majority of coronaviruses capable of infecting humans;however, rodents are proposed as natural hosts for HCoV-OC43 and HCoV-HKU1. Different animal species could serve as intermediate hosts including alpacas (HCoV-229E), livestock (HCoV-OC43), civet cats (SARS-CoV), camels (MERS-CoV), and pangolins (SARS-CoV-2). In Croatia, SARS-CoV-2 was detected in humans, pet animals, wildlife, and the environment. The COVID-19 pandemic has highlighted the role of the 'One Health' approach in the surveillance of zoonotic diseases.Copyright © 2022, University Hospital of Infectious Diseases. All rights reserved.

10.
J Environ Chem Eng ; 11(3): 110176, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2325763

ABSTRACT

Although waterborne virus removal may be achieved using separation membrane technologies, such technologies remain largely inefficient at generating virus-free effluents due to the lack of anti-viral reactivity of conventional membrane materials required to deactivating viruses. Here, a stepwise approach towards simultaneous filtration and disinfection of Human Coronavirus 229E (HCoV-229E) in water effluents, is proposed by engineering dry-spun ultrafiltration carbon nanotube (CNT) membranes, coated with anti-viral SnO2 thin films via atomic layer deposition. The thickness and pore size of the engineered CNT membranes were fine-tuned by varying spinnable CNT sheets and their relative orientations on carbon nanofibre (CNF) porous supports to reach thicknesses less than 1 µm and pore size around 28 nm. The nanoscale SnO2 coatings were found to further reduce the pore size down to ∼21 nm and provide more functional groups on the membrane surface to capture the viruses via size exclusion and electrostatic attractions. The synthesized CNT and SnO2 coated CNT membranes were shown to attain a viral removal efficiency above 6.7 log10 against HCoV-229E virus with fast water permeance up to ∼4 × 103 and 3.5 × 103 L.m-2.h-1.bar-1, respectively. Such high performance was achieved by increasing the dry-spun CNT sheets up to 60 layers, orienting successive 30 CNT layers at 45°, and coating 40 nm SnO2 on the synthesized membranes. The current study provides an efficient scalable fabrication scheme to engineer flexible ultrafiltration CNT-based membranes for cost-effective filtration and inactivation of waterborne viruses to outperform the state-of-the-art ultrafiltration membranes.

11.
Topics in Antiviral Medicine ; 31(2):215, 2023.
Article in English | EMBASE | ID: covidwho-2320550

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel and highly pathogenic coronavirus and is the causative agent of COVID-19, an ongoing pandemic that has posed a serious threat to public health and global economy. Thus, there is a pressing need for therapeutic interventions that target essential viral proteins and regulate virus spread and replication. To invade the host cell, the receptor-binding domain (RBD) of SARS-CoV-2 Spike protein binds to the host cell's ACE2 receptor, followed by cleavage events that allow the Spike protein to fuse with the host cell membrane. Thus, the essential role of Spike protein in ACE2 receptor binding and viral fusion makes it a prime target for therapeutic interventions. Method(s): We performed molecular docking and molecular dynamics (MD) simulation-based virtual screening against SARS-CoV-2 RBD/ACE2 interface using a commercial library of 93,835 drug-like compounds. Compounds with promising docking poses and scores were selected for further MD simulation refinement, from which ten lead compounds were identified. Antiviral potencies of ten lead compounds were evaluated against lentiviral vectors pseudotyped with SARS-CoV-2 Spike to down select to a single lead compound, SAI4. ELISA-based assays were employed to determine the binding affinities of SAI4 to recombinant SARS-CoV-2 RBD. Antiviral potential of SAI4 was validated against genuine SARS-CoV-2 in a BSL3 setting. Result(s): We identified SAI4 as a candidate small molecule, which inhibited SARS-CoV-2 pseudovirus entry with IC50 value of ~18 muM. We determined that SAI4 binds RDB with a Kd of ~20 muM. Using cells engineered to express ACE2 and cells that express physiological levels of ACE2, we found that SAI4 inhibited SARS-CoV-2 pseudovirus entry at both engineered and physiological ACE2 levels. We validated the antiviral potential of SAI4 against genuine SARS-CoV-2 and HCoV-NL63. Lastly, we demonstrated antiviral potential of SAI4 against four SARS-CoV-2 variants of concern (alpha, beta, gamma, and delta). Conclusion(s): Using virtual screening, we identified SAI4 as the promising hit compound which displayed inhibitory activities against SARS-CoV-2 entry and its four variants of concern. Thus, our study will pave the way for further development of small molecules for therapeutic targeting of SARS-CoV-2 entry to combat the COVID-19 pandemic.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; 28(19):34-41, 2022.
Article in Chinese | EMBASE | ID: covidwho-2314803

ABSTRACT

Objective:To determine the therapeutic effect of Gegentang granules on a disease-syndrome mouse model combining human coronavirus 229EhCoV-229Epneumonia with Hanshi Yidu Xifei syndrome in vivo. Method(s): Mice were randomly divided into normal group,infection group,cold-dampness group,model group,chloroquine phosphate group0.18 g.kg-1,interferon-alpha2bIFN-alpha2bgroup1.83x106 U.kg-1, Gegentang granules high-dose and low-dose groups6.6,3.3 g.kg-1with 10 mice in each group. Cold-dampness environment and hCoV-229E infection were used for modeling,and the general status and lung index of mice in each group were observed. The viral load in lung tissue was detected by real-time fluorescent quantitative polymerase chain reactionReal-time PCR,the pathological changes in lung tissue were evaluated by hematoxylin-eosinHEstaining,the levels of serum gastrointestinal hormones and inflammatory factors in lung tissue were detected by enzyme-linked immunosorbent assayELISA,and the percentage of peripheral blood lymphocytes was detected by flow cytometry. Result(s):Comparing with model group,Gegentang granules could significantly alleviate the physical signs of Hanshi Yidu Xifei syndrome,including listlessness,weakness of limbs,sticky stool,etc. Comparing with model group,Gegentang granules high-dose group significantly reduced lung index,histopathological score of interstitial lung and bronchus,and the level of serum motilinP< 0.05,P<0.01,two doses of Gegentang granules could significantly increase the level of serum gastrinP< 0.05,P<0.01,the percentage of CD4+ ,CD8+ T lymphocytes in peripheral bloodP<0.05,P<0.01,and the level of tumor necrosis factor-alphaTNF-alphain lung tissue was significantly decreasedP<0.01,and the level of interleukin-6IL-6showed decreasing tendency. Conclusion(s): Gegentang granules has therapeutic effect on model mice. It can improve the appearance and behavior characterization,regulate the level of gastrointestinal hormones,decrease lung index and histopathological score,and possibly play an immunomodulatory role by inhibiting the expression of inflammatory cytokines in lung tissue and restoring the percentage of peripheral blood lymphocytes.Copyright © 2022, China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica. All rights reserved.

13.
Respirology ; 28(Supplement 2):106, 2023.
Article in English | EMBASE | ID: covidwho-2314408

ABSTRACT

Introduction/Aim: As the causative agent of COVID-19, SARS-CoV-2 remains a global cause for concern. Compared to other highly pathogenic coronaviruses (SARS-CoV and MERS-CoV), SARS-CoV-2 exhibits stronger transmissibility but less lethality, indicating that SARS-CoV-2 displays unique characteristics, despite the partial genomic proximity. Thus, we aim to employ RNA sequencing to define transcriptional differences in epithelial responses following infection with SARS-CoV-2 compared to pathogenic SARS-CoV and MERS-CoV, and low pathogenic HCoV-229E. Method(s): Primary human bronchial epithelial cells (PBEC) were differentiated for 6 weeks at the air-liquid interface (ALI) before parallel infection by the 4 different coronaviruses (n = 4). After infection following apical application of coronaviruses at low dose (MOI 0.1), cells were harvested for bulk RNA sequencing. Gene were considered significant with a fold change (FC) > 2 and false discovery rate of FDR < 0.05. Inhibitor experiments were conducted on CALU-3 cells using DIM-C-pPhOH 10 muM (NR4A1 antagonist), Sp600125 10 muM (JNK inhibitor), T-5224 10 muM (AP-1 transcription factor inhibitor) and Cytosporone B (CsB 5 muM;NR4A1 agonist) preincubated for 1 h with these compounds and subsequently infected with SARS-CoV-2 or MERS-CoV (MOI of 1). Samples were collect 24 h later for PCR. Result(s): PCR and RNA-Seq demonstrated that all tested coronaviruses efficiently infected ALI-PBEC and replicated over 72 h (p < 0.05). RNA sequencing analysis revealed that infection with SARS-CoV, MERS-CoV and HCoV-229E resulted in largely similar transcriptional responses by the epithelial cells. However, whereas infection with these viruses was accompanied by an increased expression of genes associated with JNK/AP-1 signalling, including FOS, FOSB and NR4A1 (FC > 1, FDR < 0.05), no such increase was observed following SARS-CoV-2 infection. Further, we found that an NR4A1 antagonist reduced viral replication of MERS and SARs-CoV-2 100-fold in Calu-3 cells. Conclusion(s): In conclusion, these data suggest that SARS-CoV-2-infected ALI-PBEC exhibit a unique transcriptional response compared to other coronaviruses, which might relate to the pathogenicity of the virus.

14.
Egyptian Journal of Chemistry ; 65(13 (Part A):1241-1248, 2022.
Article in English | CAB Abstracts | ID: covidwho-2312106

ABSTRACT

Background: Reports showed presence of SARS-CoV-2 genetic material in wastewater. Wastewater concentration methods are optimized for detection of non-enveloped viruses so need to be adopted for enveloped viruses and their genetic material. Methods: Conventional (cRT-PCR) and quantitative real time RT-PCR (qRT-PCR) were used as readouts to compare 4 water concentration methods namely, (A) filtration on negatively charged membrane followed by extracting RNA from it, (B) adsorbtion-elution method, (C) flocculation with skimmed milk and (D) polyethylene glycol precipitation, to detect SARS-CoV-2 RNA and 229E human coronavirus (229E-HCoV) as a model for spike-containing enveloped virus from fresh and wastewater. Results: On using cRT-PCR: recovery rate of SARS-CoV-2 RNA was better using method A then B for fresh water and method B then D for wastewater. 229E-HCoV recovery from fresh water was better using method C then A and methods B then D for wastewater. On using qRT-PCR, both methods A and B were better for SARS-CoV-2 RNA recovery from both fresh and wastewater. For the 229E-HCoV methods A was the most efficient for fresh water and method B for wastewater. Conclusion: Method B is recommended for SARS-CoV-2 RNA or whole 229E-HCoV recovery from wastewater.

15.
Curr Med Chem ; 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2314016

ABSTRACT

This patent describes the synthesis of compounds, methods, and compositions for preventing, treating, and/or curing Covid-19, human coronavirus, and enterovirus infections. Some peptidomimetic compounds are very potent and could be a game changer in new treatment therapy for COVID-19.

16.
Immune Netw ; 23(2): e19, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2315720

ABSTRACT

Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model. Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.

17.
Journal of Inorganic Materials ; 38(1):3-31, 2023.
Article in English | Web of Science | ID: covidwho-2309556

ABSTRACT

The outbreak of corona virus disease 2019 (COVID-19) has aroused great attention around the world. SARS-CoV-2 possesses characteristics of faster transmission, immune escape, and occult transmission by many mutation, which caused still grim situation of prevention and control. Early detection and isolation of patients are still the most effective measures at present. So, there is an urgent need for new rapid and highly sensitive testing tools to quickly identify infected patients as soon as possible. This review briefly introduces general characteristics of SARS-CoV-2, and provides recentl overview and analysis based on different detection methods for nucleic acids, antibodies, antigens as detection target. Novel nano-biosensors for SARS-CoV-2 detection are analyzed based on optics, electricity, magnetism, and visualization. In view of the advantages of nanotechnology in improving detection sensitivity, specificity and accuracy, the research progress of new nano-biosensors is introduced in detail, including SERS-based biosensors, electrochemical biosensors, magnetic nano-biosensors and colorimetric biosensors. Functions and challenges of nano-materials in construction of new nano-biosensors are discussed, which provides ideas for the development of various coronavirus biosensing technologies for nanomaterial researchers.

18.
Journal of Clinical Virology Plus ; 3(2) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2291858

ABSTRACT

Objectives: Shotgun proteomics is a generic method enabling detection of multiple viral species in one assay. The reliable and accurate identification of these viral species by analyzing peptides from MS-spectra is a challenging task. The aim of this study was to develop an easy accessible proteome analysis approach for the identification of viruses that cause respiratory and gastrointestinal infections. Method(s): For this purpose, a shotgun proteomics based method and a web application, 'proteome2virus', were developed. Identified peptides were searched in a database comprising proteomic data of 46 viruses known to be infectious to humans. Result(s): The method was successfully tested for cultured viruses and eight fecal samples consisting of ten different viral species from seven different virus families, including SARS-CoV-2. The samples were prepared with two different sample preparation methods and were measured with two different mass spectrometers. Conclusion(s): The results demonstrate that the developed web application is applicable to different MS data sets, generated from two different instruments, and that with this approach a high variety of clinically relevant viral species can be identified. This emphasizes the potential and feasibility for the diagnosis of a wide range of viruses in clinical samples with a single shotgun proteomics analysis.Copyright © 2023

19.
Brain and Neuroscience Advances ; 6(4):324-343, 2020.
Article in English | ProQuest Central | ID: covidwho-2290745

ABSTRACT

Infections of the central nervous system (CNS) infections are critical problems for public health. They are caused by several different organisms, including the respiratory coronaviruses (CoVs). CoVs usually infect the upper respiratory tract causing the common cold. However, in infants, and in elderly and immunocompromised persons, they can also affect the lower respiratory tract causing pneumonia and various syndromes of respiratory distress. CoVs also have neuroinvasive capabilities because they can spread from the respiratory tract to the CNS. Once infection begins in the CNS cells, it can cause various CNS problems such as status epilepticus, encephalitis, and long‐term neurological disease. This neuroinvasive properties of CoVs may damage the CNS as a result of misdirected host immune response, which could be associated with autoimmunity in susceptible individuals (virus‐induced neuro‐immunopathology) or associated with viral replication directly causing damage to the CNS cells (virus‐induced neuropathology). In December 2019, a new disease named COVID‐19 emerged which is caused by CoVs. The significant clinical symptoms of COVID‐19 are related to the respiratory system, but they can also affect the CNS, causing acute cerebrovascular and intracranial infections. We describe the possible invasion routes of coronavirus in this review article, and look for the most recent findings associated with the neurological complications in the recently published literature.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; 27(2):66-73, 2021.
Article in Chinese | EMBASE | ID: covidwho-2306522

ABSTRACT

Objective:To determine the therapeutic effect of in vitro cultivation of bezoar on a mouse model adding disease with syndrome of coronavirus pneumonia with Yidu Xifei syndrome. Method: BALB/c mice were randomly divided into six groups according to their weight grade:normal group,HCoV-229E infection group,cold and damp group,a mouse model combining disease with syndrome of coronavirus pneumonia with Yidu Xifei syndrome,and high and low dose group of in vitro cultivation of bezoar. The combination model of human coronavirus pneumonia with Yidu Xifei syndrome mice was established by the method of cold dampness condition stimulation+coronavirus HCoV-229E infection. In vitro cultivation of bezoar (0.128,0.064 g.kg-1 )was administrated by gavage for 3 days from the day of infection. The observation indexes included:general state observation of mice,inhibition rate of lung index and lung index of mice. Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR)was used to detect the viral load in the lung tissues of mice. Serum levels of motilin(MTL),gastrin(GAS),and cytokines interleukin(IL)-10,IL-6, tumor necrosis factor-alpha(TNF-alpha)and interferon-gamma(IFN-gamma)in lung tissue of mice were determined by enzyme-linked immunosorbent assay(ELISA). The percentages of CD4+ T lymphocytes,CD8+ T lymphocytes and B lymphocytes in the blood of mice were determined by flow cytometry. Result:The high and low dose group of in vitro cultivation of bezoar can significantly improve the general condition of model mice. Compared with blank group, model group mice lung index increased significantly(P<0.01), nucleic acids significantly increased expression of lung tissue in mice(P<0.01),significantly higher serum MTL content in mice,GAS content significantly decreased(P<0.05,P<0.01),lung tissue cells in the immune factor TNF-alpha,IL-10 and IL-6 were significantly increased(P<0.01),peripheral blood lymphocyte CD4+ T cells in mice,The percentages of CD8+ T cells and B cells were significantly decreased(P<0.01). Compared with model group, in vitro cultivation bezoar mice lung index of high and low dose group were significantly lower(P<0.01),the lung tissue of mice express nucleic acid decreased significantly(P<0.01),MTL content decreased significantly(P< 0.01),the lung tissue of mice in the IL-6,IL-10,the TNF-alpha,IFN-gamma levels were significantly lower(P<0.01), in vitro cultivation bezoar high dose group can significantly increase the CD4+ T cell percentage(P<0.05),in vitro cultivation bezoar can to a certain extent reduce model mice lung inflammatory exudation,pulmonary interstitial edema,as well as blood stasis symptoms. Conclusion:In vitro cultivation of bezoar has a significant therapeutic effect on a mice model adding disease with syndrome of coronavirus pneumonia with Yidu Xifei syndrome. It can be treated by reducing the lung index of the model mice,improving the pathological damage of the lung tissue,adjusting the immune effective and inhibiting the clearing of inflammatory factors,and to provide a laboratory basis for clinical medication.Copyright © 2021, China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL